Evaluating Self-Report Data Using Psychometric Methods

Ron D. Hays, PhD (hays@rand.org) February 7, 2007 (3:30-6:30pm)

HS 249F

Individual Change

- Interest in
- Knowing how many patients benefit from group intervention, or
- Tracking progress on individual patients
- Sample
- 54 patients
- Average age = 56; 84\% white; 58\% female
- Method
- Self-administered SF-36 version 2 at baseline and at end of therapy (about 6 weeks later).

Physical Functioning and Emotional Well-Being at Baseline for 54 Patients at UCLA-Center for East West Medicine

RAND HFAlys tett al. (2000), American Journal of Medicine

Change in SF-36 Scores Over Time

t-test for within group change

$\cdot \mathrm{X}_{\mathrm{D}} /\left(\mathrm{SD}_{\mathrm{d}} / \mathrm{n}^{1 / 2}\right)$

$\mathrm{X}_{\mathrm{D}}=$ is mean difference, $\mathrm{SD}_{\mathrm{d}}=$ standard deviation of difference

Significance of Group Change (T-scores)

	Change	t-test	prob.
PF-10	1.7	2.38	.0208
RP-4	4.1	3.81	.0004
BP-2	3.6	2.59	.0125
GH-5	2.4	2.86	.0061
EN-4	5.1	4.33	.0001
SF-2	4.7	3.51	.0009
RE-3	1.5	0.96	$.3400<-$
EWB-5	4.3	3.20	.0023
PCS	2.8	3.23	.0021
MCS	3.9	2.82	.0067

Reliable Change Index

$\left(X_{2}-X_{1}\right) /(S E M$ * SQRT [2])

SEM $=S D_{b}$ * $(1-\text { reliability })^{1 / 2}$

Amount of Change in Observed Score Needed for Significant Individual Change

	RCI	Effect size
PF-10	8.4	0.67
RP-4	8.4	0.72
BP-2	10.4	1.01
GH-5	13.0	1.13
EN-4	12.8	1.33
SF-2	13.8	1.07
RE-3	9.7	0.71
EWB-5	13.4	1.26
PCS	7.1	0.62
MCS	9.7	0.73

Significant Change for 54 Cases

	$\%$ Improving	$\%$ Declining	Difference
PF-10	13%	2%	$+11 \%$
RP-4	31%	2%	$+29 \%$
BP-2	22%	7%	$+15 \%$
GH-5	7%	0%	$+7 \%$
EN-4	9%	2%	$+7 \%$
SF-2	17%	4%	$+13 \%$
RE-3	15%	15%	0%
EWB-5	19%	4%	$+15 \%$
PCS	24%	7%	$+17 \%$
RAND			

Multiple Steps in Developing Good Survey

- Review literature
- Expert input (patients and clinicians)
- Define constructs you are interested in
- Draft items (item generation)
- Pretest
- Cognitive interviews
- Field and pilot testing
- Revise and test again
- Translate/harmonize across languages

What's a Good Measure?

- Same person gets same score (reliability)
- Different people get different scores (validity)
- People get scores you expect (validity)
- It is practical to use (feasibility)

Scales of Measurement and Their Properties

Property of Numbers

Type of
Scale

Equal
Rank Order Interval
Absolute 0
Nominal
Ordinal
Interval
Ratio

Measurement Range for Health Outcome Measures

Indicators of Acceptability

- Unit non-response
- Item non-response
- Administration time

Variability

- All scale levels are represented
- Distribution approximates bell-shaped "normal"

Measurement Error

observed $=$ true + systematic + random
score error error

(bias)

Four Types of Data Collection Errors

- Coverage Error

Does each person in population have an equal chance of selection?

- Sampling Error

Are only some members of the population sampled?

- Nonresponse Error

Do people in the sample who respond differ from those who do not?

- Measurement Error

Are inaccurate answers given to survey questions?

Flavors of Reliability

- Test-retest (administrations)
- Intra-rater (raters)
- Internal consistency (items)

Test-retest Reliability of MMPI 317-362 $r=0.75$

MMPI 317
True
False

True	169	15
184		
	21	95
190	110	

I am more sensitive than most other people.

Kappa Coefficient of Agreement (Corrects for Chance)

(observed - chance) kappa $=\frac{(1-\text { chance })}{(1)}$

Example of Computing KAPPA

Example of Computing KAPPA (Continued)

$$
\begin{aligned}
P_{C} & =\frac{(1 \times 2)+(3 \times 2)+(2 \times 2)+(2 \times 2)+(2 \times 2)}{(10 \times 10)}=0.20 \\
P_{\text {obs. }} & =\frac{9}{10}=0.90 \\
\text { Kappa } & =\frac{0.90-0.20}{1-0.20}=0.87
\end{aligned}
$$

Guidelines for Interpreting Kappa

Conclusion Kappa $\frac{\text { Conclusion }}{\text { Poor }} \quad \frac{\text { Kappa }}{<0.0}$
Slight . $00-.20$
Poor
< 40 Fair
. 21 - . 40
Fair
Good
. $60-.74$
Excellent >. 74
Almost perfect . 81 - 1.00

Fleiss (1981)
Landis and Koch (1977)

Intraclass Correlation and Reliability

Model
Reliability
Intraclass Correlation

Summary of Reliability of Plant Ratings

Baseline
Follow-up

	R_{TT}	R_{II}	R_{TT}	R_{II}
One-Way Anova	0.97	0.95	0.97	0.94
Two-Way Random Effects	0.97	0.95	0.97	0.94
Two-Way Fixed Effects	0.98	0.96	0.98	0.97
Source	Label	Baseline MS		
Plants	BMS	628.667		
Within	WMS	17.700		
Raters	JMS	57.800		
Raters X Plants	EMS	13.244		

Raw Data for Ratings of Height (1/16 inch) of

 touseplants (A1, A2, etc.) by Two Raters (R1, R2| Plant | Baseline Height | Follow-up Height | Experimental Condition |
| :---: | :---: | :---: | :---: |
| A1 | | | |
| $\begin{aligned} & \mathrm{R} 1 \\ & \mathrm{R} 2 \end{aligned}$ | $\begin{aligned} & 120 \\ & 118 \end{aligned}$ | $\begin{aligned} & 121 \\ & 120 \end{aligned}$ | 1 |
| A2 | | | |
| $\begin{aligned} & \text { R1 } \\ & \text { R2 } \end{aligned}$ | $\begin{aligned} & 084 \\ & 096 \end{aligned}$ | $\begin{aligned} & 085 \\ & 088 \end{aligned}$ | 2 |
| B1 | | | |
| R1 R2 | 107 | $\begin{aligned} & 108 \\ & 104 \end{aligned}$ | 2 |
| B2 | | | |
| R1 R2 | 094 097 | 100 104 | 1 |
| C1 | | | |
| $\begin{aligned} & \mathrm{R} 1 \\ & \text { R2 } \end{aligned}$ | $\begin{aligned} & 085 \\ & 091 \end{aligned}$ | $\begin{aligned} & 088 \\ & 096 \end{aligned}$ | 2 |

Ratings of Height of Houseplants (Cont.)

Plant	Baseline Height	Follow-up Height	Experimental Condition	
C2				
	R1	079	086	1
	R2	078	092	
D1				
	R1	070	076	1
	R2	072	080	
D2				
	R1	054	056	2
	R2	056	060	
E1				
	R1	085	101	1
	R2	097	108	
E2				
	R1	090	084	2

Reliability of Baseline Houseplant Ratings

Ratings of Height of Plants: 10 plants, 2 raters
Baseline Results

Source	DF	SS	MS	F
Plants	9	5658	628.667	35.52
Within	10	177	17.700	
Raters	1	57.8	57.800	
Raters x Plants	9	119.2	13.244	

Total
$19 \quad 5835$

Sources of Variance in Baseline Houseplant Height

	dfs		MS
Source			
Plants (N)	9	628.67	(BMS)
Within	10	17.70	(WMS)
\quad Raters (K)	1	57.80	(JMS)
Raters \times Plants	9	13.24	(EMS)
Total	19		

Cronbach's Alpha

Source df SS
 MS

Respondents (BMS)
Items (JMS)
Resp. \times Items (EMS)
Total
Alpha $=\frac{2.9-1.1}{2.9}=\frac{1.8}{2.9}=0.62$

Alpha for Different Numbers of Items and Homogeneity

Average Inter-item Correlation (\bar{r})

Number of Items (k)	.0	.2	.4	.6	.8	1.0
2	.000	.333	.572	.750	.889	1.000
4	.000	.500	.727	.857	.941	1.000
6	.000	.600	.800	.900	.960	1.000
8	.000	.666	.842	.924	.970	1.000

Alpha $_{\mathrm{st}}=\frac{\mathrm{k}^{*} \overline{\mathrm{r}}}{1+(\mathrm{k}-1) * \overline{\mathrm{r}}}$

Spearman-Brown Prophecy Formula

$$
\text { alpha }_{y}=\left(\frac{N \cdot \text { alpha }_{x}}{1+(N-1)^{*} \text { alpha }_{x}}\right)
$$

$N=$ how much longer scale y is than scale x

Example Spearman-Brown Calculations

MHI-18
$\frac{18 / 32(0.98)}{(1+(18 / 32-1) * 0.98}$
$=0.55125 / 0.57125=0.96$

Number of Items and Reliability for Three Versions of the Mental Health Inventory (MHI)

Measure	Number of Items	Completion time (min.)	Reliability
MHI-32	32	$5-8$.98
MHI-18	18	$3-5$.96
MHI-5	5	1 or less	.90

Data from McHorney et al. 1992

Reliability Minimum Standards

- 0.70 or above (for group comparisons)
- 0.90 or higher (for individual assessment)
$>$ SEM $=$ SD $(1-\text { reliability })^{1 / 2}$

Reliability of a Composite Score

$$
\text { Mosier }=1-\frac{\Sigma\left(w_{i}^{2}\right)\left(\mathbf{S}_{\mathrm{i}}^{2}\right)-\Sigma\left(\mathrm{w}_{\mathrm{i}}^{2}\right)\left(\mathrm{S}_{\mathrm{i}}^{2}\right)\left(\alpha_{\mathrm{i}}\right)}{\Sigma\left(\mathrm{w}_{\mathrm{i}}^{2}\right)\left(\mathrm{S}_{\mathrm{i}}^{2}\right)+2 \Sigma\left(\mathrm{w}_{\mathrm{i}}\right)\left(\mathrm{w}_{\mathrm{k}}\right)\left(\mathrm{S}_{\mathrm{i}}\right)\left(\mathrm{S}_{\mathrm{k}}\right)\left(\mathrm{r}_{\mathrm{j}}\right)}
$$

```
w
w
S
\alpha
rik}=\mathrm{ correlation between J and K
```


Hypothetical Multitrait/Multi-Item Correlation Matrix

Trait \#1 Trait \#2 Trait \#3

	Item \#1	0.80^{*}	0.20
0.20			
Item \#2	0.80^{*}	0.20	0.20
Item \#3	0.80^{*}	0.20	0.20
Item \#4	0.20	0.80^{*}	0.20
Item \#5	0.20	0.80^{*}	0.20
Item \#6	0.20	0.80^{*}	0.20
Item \#7	0.20	0.20	0.80^{*}
Item \#8	0.20	0.20	0.80^{*}
Item \#9	0.20	0.20	0.80^{*}

*Item-scale correlation, corrected for overlap.

Multitrait/Multi-Item Correlation Matrix for Patient Satisfaction Ratings

Technical Interpersonal Communication Financial

Technical				
1	0.66*	$0.63 \dagger$	$0.67 \dagger$	0.28
2	0.55*	$0.54 \dagger$	$0.50 \dagger$	0.25
3	0.48*	0.41	$0.44 \dagger$	0.26
4	0.59*	0.53	$0.56 \dagger$	0.26
5	$0.55 *$	$0.60 \dagger$	$0.56 \dagger$	0.16
6	0.59*	0.58†	$0.57 \dagger$	0.23
Interpersonal				
1	0.58	0.68^{*}	0.63†	0.24
2	0.59†	0.58*	$0.61+$	0.18
3	$0.62 \dagger$	$0.65 *$	$0.67 \dagger$	0.19
4	$0.53 \dagger$	0.57*	$0.60 \dagger$	0.32
5	0.54	0.62*	$0.58 \dagger$	0.18
6	0.48†	0.48*	$0.46 \dagger$	0.24

Note - Standard error of correlation is 0.03 . Technical $=$ satisfaction with technical quality. Interpersonal = satisfaction with the interpersonal aspects. Communication = satisfaction with communication. Financial = satisfaction with financial arrangements. *Item-scale correlations for hypothesized scales (corrected for item overlap). tCorrelation within two standard errors of the

Construct Validity

- Does measure relate to other measures in ways consistent with hypotheses?
- Responsiveness to change including minimally important difference

Construct Validity for Scales Measuring Physical Functioning

Severity of Heart Disease
Relative None Mild Severe F-ratio Validity

Scale \#1	91	90	87	2	--
Scale \#2	88	78	74	10	5
Scale \#3	95	87	77	20	10

Responsiveness to Change and Minimally Important Difference (MID)

- HRQOL measures should be responsive to interventions that changes HRQOL
- Need external indicators of change (Anchors)
- mean change in HRQOL scores among people who have changed ("minimal" change for MID).

Self-Report Indicator of Change

- Overall has there been any change in your asthma since the beginning of the study?

Much improved: Moderately improved: Minimally improved
No change
Much worse: Moderately worse; Minimally worse

Clinical Indicator of Change

- "changed" group = seizure free (100\% reduction in seizure frequency)
- "unchanged" group $=<50 \%$ change in seizure frequency

Responsiveness Indices

(1) Effect size (ES) = D/SD
(2) Standardized Response Mean (SRM) $=$ D/SD †
(3) Guyatt responsiveness statistic (RS) $=\mathrm{D} / \mathrm{SD}^{\ddagger}$
D = raw score change in "changed" group:
SD = baseline SD;
$S D^{+}=S D$ of $D:$
$S D^{\ddagger}=S D$ of D among "unchanged"

Effect Size Benchmarks

- Small: 0.20->0.49
- Moderate: 0.50->0.79
- Large: 0.80 or above

Treatment Impact on PCS

Treatment Impact on MCS

IRT

Latent Trait and Item Responses

Item Responses and Trait Levels

Person 1 Person 2 Person 3

Item Characteristic Curves (1-Parameter Model)

RANDhealth

Item Characteristic Curves (2-Parameter Model)

— Item $1($ Slope $=2.5) \quad \cdots \cdot$ Item $2($ Slope $=0.75)$

Dichotomous Items Showing DIF (2-Parameter Model)

RANDhealth

