

Evaluating Self-Report Data Using Psychometric Methods

Ron D. Hays, PhD (hays@rand.org) February 7, 2007 (3:30-6:30pm) HS 249F

Individual Change

- Interest in
 - Knowing how many patients benefit from group intervention, or
 - Tracking progress on individual patients
- Sample
 - 54 patients
 - Average age = 56; 84% white; 58% female
- Method
 - Self-administered SF-36 version 2 at baseline and at end of therapy (about 6 weeks later).

Physical Functioning and Emotional Well-Being at Baseline for 54 Patients at UCLA-Center for East West Medicine

RAND Hays et al. (2000), American Journal of Medicine

Change in SF-36 Scores Over Time

t-test for within group change

 $\mathbb{N}_{D}/(\mathbb{SD}_{d}/n^{1/2})$

X_{D} = is mean difference, SD_{d} = standard deviation of difference

Significance of Group Change (T-scores)

	Change	t-test	prob.
PF-10	1.7	2.38	.0208
RP-4	4.1	3.81	.0004
BP-2	3.6	2.59	.0125
GH-5	2.4	2.86	.0061
EN-4	5.1	4.33	.0001
SF-2	4.7	3.51	.0009
RE-3	1.5	0.96	.3400 <-
EWB-5	4.3	3.20	.0023
PCS	2.8	3.23	.0021
MCS	3.9	2.82	.0067

Reliable Change Index

$(X_2 - X_1)/(SEM * SQRT [2])$

SEM = $SD_b \times (1 - reliability)^{1/2}$

Amount of Change in Observed Score Needed for Significant Individual Change

RCI	Effect size
8.4	0.67
8.4	0.72
10.4	1.01
13.0	1.13
12.8	1.33
13.8	1.07
9.7	0.71
13.4	1.26
7.1	0.62
9.7	0.73
	RCI 8.4 8.4 10.4 13.0 12.8 13.8 9.7 13.4 7.1 9.7

RA

Significant Change for 54 Cases

	%	%	Difference
	Improving	Declining	
PF-10	13%	2%	+ 11%
RP-4	31%	2%	+ 29%
BP-2	22%	7%	+ 15%
GH-5	7%	0%	+ 7%
EN-4	9%	2%	+ 7%
SF-2	17%	4%	+ 13%
RE-3	15%	15%	0%
EWB-5	19%	4%	+ 15%
PCS	24%	7%	+ 17%
MCS	22%	11%	+ 11%

Multiple Steps in Developing Good Survey

- Review literature
- Expert input (patients and clinicians)
- Define constructs you are interested in
- Draft items (item generation)
- Pretest
 - Cognitive interviews
 - Field and pilot testing
- Revise and test again
- Translate/harmonize across languages

What's a Good Measure?

- Same person gets same score (reliability)
- Different people get different scores (validity)
- People get scores you expect (validity)
- It is practical to use (feasibility)

Scales of Measurement and Their Properties

Property of Numbers

Type of Scale	Rank Order	Equal Interval	Absolute 0
Nominal			
Interval	+	+	
Ratio	+	+	+

Measurement Range for Health Outcome Measures

Indicators of Acceptability

- Unit non-response
- Item non-response
- Administration time

Variability

- · All scale levels are represented
- Distribution approximates bell-shaped "normal"

Measurement Error

observed = true + systematic + random score error error

(bias)

Four Types of Data Collection Errors

· Coverage Error

Does each person in population have an equal chance of selection?

- Sampling Error Are only some members of the population sampled?
- Nonresponse Error Do people in the sample who respond differ from those who do not?
- Measurement Error Are inaccurate answers given to survey questions?

Flavors of Reliability

- Test-retest (administrations)
- Intra-rater (raters)
- Internal consistency (items)

Test-retest Reliability of MMPI 317-362 r = 0.75

I am more sensitive than most other people.

Kappa Coefficient of Agreement (Corrects for Chance)

kappa = (observed - chance) (1 - chance)

Example of Computing KAPPA

Example of Computing KAPPA (Continued)

$$P_{c} = \frac{(1 \times 2) + (3 \times 2) + (2 \times 2) + (2 \times 2) + (2 \times 2)}{(10 \times 10)} = 0.20$$

$$P_{obs.} = \frac{9}{10} = 0.90$$

$$Cappa = \frac{0.90 - 0.20}{1 - 0.20} = 0.87$$

Guidelines for Interpreting Kappa

<u>Conclusion</u>	<u>Kappa</u>	<u>Conclusion</u> Poor	<u>Kappa</u> < 0.0
		Slight	.0020
Poor	< .40	Fair	.2140
Fair	.4059	Moderate	.4160
Good	.6074	Substantial	.6180
Excellent	>.74	Almost perfect	.81 - 1.00

Fleiss (1981)

Landis and Koch (1977)

Intraclass Correlation and Reliability

Model	Reliability	Intraclass Correlation
One-Way	MS BMS - MS WMS	MS _{BMS} - MS _{WMS}
	MS BMS	MS BMS + (K-1)MS WMS
Two-Way	MS BMS - MS EMS	MS BMS - MS EMS
Fixed	MS BMS	MS _{EMS} + (K-1)MS _{EMS}
Two-Way	N (MS BMS - MS _{EMS})	MS BMS - MS EMS
Random	MS BMS +MS JMS - MS EMS	MS BMS + (K-1)MS = K (MS _{JMS} - MS _{EMS})/N

Summary of Reliability of Plant Ratings

		Baseline	2	Follow-up	
		R_{TT}	R_{TT}	R_{TT}	R_{TT}
One-Way Anova		0.97	0.95	0.97	0.94
Two-Way Random Effects		0.97	0.95	0.97	0.94
Two-Way Fixed Effects		0.98	0.96	0.98	0.97
Source		Label	Baselii	ne MS	
Plants		BMS	628.	667	
Within	WM	S	17.700		
Raters		JMS	57.	800	
Raters X Plants		EMS	13.	244	

Raw Data for Ratings of Height (1/16 inch) of louseplants (A1, A2, etc.) by Two Raters (R1, R2)

	Plant	Baseline Height	Follow-up Height	Experimental Condition
	A1 R1 R2	120 118	121 120	1
	A2 R1 R2	084 096	085 088	2
	B1 R1 R2	107 105	108 104	2
	B2 R1 R2	094 097	100 104	1
RANDHEALTH	C1 R1 R2	085 091	088 096	2

Ratings of Height of Houseplants (Cont.)

Plar	it	Baseline Height	Follow-up Height	Experimental Condition	
C2	R1 R2	079 078	086	1	
D1	R1 R2	070 072	076 080	1	
D2	R1 R2	054 056	056 060	2	
E1	R1 R2	085 097	101 108	1	
E2	R1 R2	090 092	084 096	2	

Reliability of Baseline Houseplant Ratings

Ratings of Height of Plants: 10 plants, 2 raters

Baseline Results

Source	DF	SS	MS	F
Plants	9	5658	628.667	35.52
Within	10	177	17.700	
Raters	1	57.8	57.800	
Raters x Plants	9	119.2	13.244	
tal	19	5835		

RAN

Sources of Variance in Baseline Houseplant Height

Source	dfs	MS	
Plants (N)	9	628.67	(BMS)
Within	10	17.70	(WMS)
Raters (K)	1	57.80	(JMS)
Raters x Plants	9	13.24	(EMS)

Total

19

Cronbach's Alpha

Source	df	SS	MS
Respondents (BMS) Items (JMS) Resp. x Items (EMS	4 1 5) 4	11.6 0.1 4.4	2.9 0.1 1.1
Total	9	16.1	
Alpha = <u>2.9 - 1.1</u> 2.9	= <u>1.8</u> = 0 2.9	0.62	

Alpha for Different Numbers of Items and Homogeneity

Average Inter-item Correlation (\overline{r})

Number of Items	(k) .0	.2	.4	.6	.8	1.0
2	.000	.333	.572	.750	.889	1.000
4	.000	.500	.727	.857	.941	1.000
6	.000	.600	.800	.900	.960	1.000
8	.000	.666	.842	.924	.970	1.000

$$Alpha_{st} = \frac{k * \overline{r}}{1 + (k - 1) * \overline{r}}$$

Spearman-Brown Prophecy Formula

alpha y =
$$\left(\frac{N \cdot alpha}{1 + (N - 1) \cdot alpha}\right)$$

N = how much longer scale y is than scale x

Example Spearman-Brown Calculations

MHI-18

18/32 (0.98) (1+(18/32 -1)*0.98

= 0.55125/0.57125 = 0.96

Number of Items and Reliability for Three Versions of the Mental Health Inventory (MHI)

Measure	Number of Items	Completion time (min.)	Reliability
MHI-32	32	5-8	.98
MHI-18	18	3-5	.96
MHI-5	5	1 or less	.90

Data from McHorney et al. 1992

Reliability Minimum Standards

- 0.70 or above (for group comparisons)
- 0.90 or higher (for individual assessment)
 - > SEM = SD (1 reliability)^{1/2}

Reliability of a Composite Score

$$Mosier = 1 - \frac{\Sigma(w_j^2)(S_j^2) - \Sigma(w_j^2)(S_j^2)(\alpha_j)}{\Sigma(w_j^2)(S_j^2) + 2\Sigma(w_j)(w_{\kappa})(S_j)(S_{\kappa})(r_{j\kappa})}$$

- w_j = weight given to component J
- $\mathbf{w}_{\kappa} = \mathbf{w} \mathbf{e} \mathbf{i} \mathbf{g} \mathbf{h} \mathbf{t}$ given to component K
- S_{j} = standard deviation of J
- α_{j} = reliability of J
- $\mathbf{r}_{j\kappa}$ = correlation between J and K

Hypothetical Multitrait/Multi-Item Correlation Matrix

	<u>Trait #1</u>	<u> Trait #2</u>	<u>Trait #3</u>
Item #1	0.80*	0.20	0.20
Item #2	0.80*	0.20	0.20
Item #3	0.80*	0.20	0.20
Item #4	0.20	0.80*	0.20
Item #5	0.20	0.80*	0.20
Item #6	0.20	0.80*	0.20
Item #7	0.20	0.20	0.80*
Item #8	0.20	0.20	0.80*
Item #9	0.20	0.20	0.80*

*Item-scale correlation, corrected for overlap. RANDHEALTH

Multitrait/Multi-Item Correlation Matrix for Patient Satisfaction Ratings

	Technical	Interpersonal	Communication	Financial
Technical				
1	0.66*	0.63†	0.67†	0.28
2	0.55*	0.54†	0.50†	0.25
3	0.48*	0.41	0.44†	0.26
4	0.59*	0.53	0.56†	0.26
5	0.55*	0.60†	0.56†	0.16
6	0.59*	0.58†	0.57†	0.23
Interpersonal				
1	0.58	0.68*	0.63†	0.24
2	0.59†	0.58*	0.61†	0.18
3	0.62†	0.65*	0.67†	0.19
4	0.53†	0.57*	0.60†	0.32
5	0.54	0.62*	0.58†	0.18
6	0.48†	0.48*	0.46†	0.24

Note – Standard error of correlation is 0.03. Technical = satisfaction with technical quality. Interpersonal = satisfaction with the interpersonal aspects. Communication = satisfaction with communication. Financial = satisfaction with financial arrangements. *Item-scale correlations for hypothesized scales (corrected for item overlap). †Correlation within two standard errors of the correlation of the item with its hypothesized scale.

Construct Validity

- Does measure relate to other measures in ways consistent with hypotheses?
- Responsiveness to change including minimally important difference

÷ Eil	e <u>E</u> dit	⊻iew	Insert	F <u>o</u> rma	at <u>T</u> ools	T <u>a</u> ble <u>W</u> ind	dow <u>H</u> elp) Ado <u>b</u> e	PDF A	\crobat <u>⊂</u> or	nments						Type a question for he	lp 🔻	×
: 🗅	📬 🔒	2	a 🛓	ABC 🕄	1 X R	à 🛍 🝼 🕒	7 - 01 -	8	2 💷 🔤	3 🎫 🌌		100%	• 📀	💷 <u>R</u> ea	ad 🥃				
		ŧ.	<u>4</u> Plain T	ſext	🗸 Couri	er New	• 10 •	ΒI	<u>u</u>	= =	≡ ‡≡	• 1 = 3	= 🛊	F F	• 🍄 • <u>A</u> •	-			
L		_		🏼	ζ,	1		· 2 · ·		• 3 • •		• 4 • •		· 5 · ·		111 <u>6</u> 1	· 7 · · · · 1	ī	7
						I	1	I		1		1	I	1					
:					MTMM. H	EXE (2.3):	Multi	trait-	Multin	nethod	Progra	m							=
-					Havasl	 hi, T., &	Havs,	 R. D.	(1987	7). A:	microc	ompute	r proc	ram					
:					for	analyzing	g multi	trait-	multin	nethod :	matric	es. B	ehavio	r					
न					Rese	earch Meth	nods, I	nstrum	ents,	& Comp	uters,	19 (3), 345	-348.					
:					Corro	lotion Wo		. Ta	Ac Fo	llowa									
-					corre.	Tacion Ma	LIX II	put is	AS FU)11008:									
:					Kohav	aghi PFNG	1 2007												
~					nobay		11 2001												
:					N =	790; DFS	= 78	7											
· -																			
:						METHOD TRAIT	1 1	2	3	4	2 1	2	3	4					
															-				
:					1. 1	. PHYSICAL . EMOTIONA	1.00 .48	1.00											
•					3	SOCIAL F	.43	.52	1.00										
-					4	SCHOOL F	.46	.42	.39	1.00	1								
•					2.1	.PHYSICAL	[.19]	.13	.13	.17	1.00								
÷					2.	EMOTIONA	.27	[.32]	.20	.24	.44	1.00	1 00						
					э. 4	SCHOOL F	.22	.20	[.34]	.21 Г 411	.40	.57	1.00	1 00					
•					Т	.Jenoon r	.10	.21		[.41]	.55	.04	.07	1.00					
-					(Tota	al Z =	1.31	Mea	n Z =	.33)									
:					Aver:	ade conve	gent v	alidit	v corr	elatio	n is	.317							
•					Avera	age off-d:	lagonal	corre	latior	is is		.345							~
					=====								=						±
•																			•
																		1	Ŧ
		<u>></u> لا									Ш	-							
Dra	aw ▼ 😼	Auto	Shapes 🔻	1 1	$\Box \bigcirc$	A 🖓	8 🔏 .	🖑 • 🚄	• <u>A</u> •		₫ 🗖	i							
Pag	e 1	Sec 1	1	l/4	At 4.4"	Ln 23 Co	 4 2 F	REC TRK	EXT C	VR Englis	h (U.S	<u>Ø</u>							

Construct Validity for Scales Measuring Physical Functioning

	Severity of Heart Disease									
	None	Mild	Severe	F-ratio	Relative Validity					
Scale #1	91	90	87	2						
Scale #2	88	78	74	10	5					
Scale #3	95	87	77	20	10					

Responsiveness to Change and Minimally Important Difference (MID)

- HRQOL measures should be responsive to interventions that changes HRQOL
- Need external indicators of change (Anchors)
 - mean change in HRQOL scores among people who have changed ("minimal" change for MID).

Self-Report Indicator of Change

• Overall has there been any change in your asthma since the beginning of the study?

Much improved; Moderately improved; Minimally improved **No change** Much worse; Moderately worse; Minimally worse

Clinical Indicator of Change

 "changed" group = seizure free (100% reduction in seizure frequency)

- "unchanged" group = <50% change in seizure frequency

Responsiveness Indices

- (1) Effect size (ES) = D/SD
- (2) Standardized Response Mean (SRM) = D/SD^{+}
- (3) Guyatt responsiveness statistic (RS) = D/SD[‡]
 - D = raw score change in "changed" group; SD = baseline SD;
 - $SD^{\dagger} = SD$ of D;
 - SD[‡] = SD of D among "unchanged"

Effect Size Benchmarks

- Small: 0.20->0.49
- Moderate: 0.50->0.79
- Large: 0.80 or above

Treatment Impact on PCS

Treatment Impact on MCS

IRT

Latent Trait and Item Responses

Item Responses and Trait Levels

Item Characteristic Curves (1-Parameter Model)

Item Characteristic Curves (2-Parameter Model)

Dichotomous Items Showing DIF (2-Parameter Model)

