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ABSTRACT

Item response theory (IRT) is concerned with accurate test scoring and development of test items. You
design test items to measure various kinds of abilities (such as math ability), traits (such as extroversion),
or behavioral characteristics (such as purchasing tendency). Responses to test items can be binary (such
as correct or incorrect responses in ability tests) or ordinal (such as degree of agreement on Likert scales).
Traditionally, IRT models have been used to analyze these types of data in psychological assessments
and educational testing. With the use of IRT models, you can not only improve scoring accuracy but also
economize test administration by adaptively using only the discriminative items. These features might explain
why in recent years IRT models have become increasingly popular in many other fields, such as medical
research, health sciences, quality-of-life research, and even marketing research. This paper describes a
variety of IRT models, such as the Rasch model, two-parameter model, and graded response model, and
demonstrates their application by using real-data examples. It also shows how to use the IRT procedure,
which is new in SAS/STAT® 13.1, to calibrate items, interpret item characteristics, and score respondents.
Finally, the paper explains how the application of IRT models can help improve test scoring and develop
better tests. You will see the value in applying item response theory, possibly in your own organization!

INTRODUCTION

Item response theory (IRT) was first proposed in the field of psychometrics for the purpose of ability
assessment. It is widely used in education to calibrate and evaluate items in tests, questionnaires, and other
instruments and to score subjects on their abilities, attitudes, or other latent traits. During the last several
decades, educational assessment has used more and more IRT-based techniques to develop tests. Today,
all major educational tests, such as the Scholastic Aptitude Test (SAT) and Graduate Record Examination
(GRE), are developed by using item response theory, because the methodology can significantly improve
measurement accuracy and reliability while providing potentially significant reductions in assessment time
and effort, especially via computerized adaptive testing. In recent years, IRT-based models have also become
increasingly popular in health outcomes, quality-of-life research, and clinical research (Hays, Morales, and
Reise 2000; Edelen and Reeve 2007; Holman, Glas, and de Haan 2003; Reise and Waller 2009). For
simplicity, models that are developed based on item response theory are referred to simply as IRT models
throughout the paper.

The paper introduces the basic concepts of IRT models and their applications. The next two sections explain
the formulations of the Rasch model and the two-parameter model. Emphases are on the conceptual
interpretations of the model parameters. Extensions of the basic IRT models are then described, and some
mathematical details of the IRT models are presented. Next, two data examples show the applications of the
IRT models by using the IRT procedure. Compared with classical test theory (CTT), item response theory
provides several advantages. These advantages are discussed before the paper concludes with a summary.

WHAT IS THE RASCH MODEL?

The Rasch model is one of the most widely used IRT models in various IRT applications. Suppose you have
J binary items, Xy, ..., X, where 1 indicates a correct response and 0 an incorrect response. In the Rasch
model, the probability of a correct response is given by

eli—e;

Pr =D = e



where 7; is the ability (latent trait) of subject i and «; is the difficulty parameter of item j. The probability of
a correct response is determined by the item’s difficulty and the subject’s ability. This probability can be
illustrated by the curve in Figure 1, which is called the item characteristic curve (ICC) in the field of IRT. From
this curve you can observe that the probability is a monotonically increasing function of ability. This means
that as the subject’s ability increases, the probability of a correct response increases; this is what you would
expect in practice.

Figure 1 ltem Characteristic Curve
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As the name suggests, the item difficulty parameter measures the difficulty of answering the item correctly.
The preceding equation suggests that the probability of a correct response is 0.5 for any subject whose
ability is equal to the value of the difficulty parameter. Figure 2 shows the ICCs for three items, with difficulty
parameters of —2, 0, and 2. By comparing these three ICCs, you can see that the location of the ICC is
determined by the difficulty parameter. To get a 0.5 probability of a correct response for these three items,
the subject must have an ability of -2, 0, and 2, respectively.

Figure 2 Item Characteristic Curves
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WHAT IS THE TWO-PARAMETER MODEL?

In the Rasch model, all the items are assumed to have the same shape. In practice, however, this assumption
might not be reasonable. To avoid this assumption, another parameter called the discrimination (slope)
parameter is introduced. The resulting model is called the two-parameter model. In the two-parameter
model, the probability of a correct response is given by

eMini—a,
P =D =
where 1 ; is the discrimination parameter for item j. The discrimination parameter is a measure of the
differential capability of an item. A high discrimination parameter value suggests an item that has a high
ability to differentiate subjects. In practice, a high discrimination parameter value means that the probability of
a correct response increases more rapidly as the ability (latent trait) increases. ltem characteristic curves of
three items, item1, item2, and item3, with different discrimination parameter values are shown in Figure 3.

Figure 3 Item Characteristic Curves

0.8

06

Probability

0.4

02

0.0

5 2 05 0 05 2 5
Ability
item1(DIS=0.3) item2(DIS=1) item3(DIS=2)

The difficulty parameter values for these three items are all 0. The discrimination parameter values are 0.3,
1, and 2, respectively. In Figure 3, you can observe that as the discrimination parameter value increases, the
ICC becomes more steep around 0. As the ability value changes from —0.5 to 0.5, the probability of a correct
response changes from 0.3 to 0.7 for item3, which is much larger than item1. For that reason, item3 can
differentiate subjects whose ability value is around 0 more efficiently than item1 can.

EXTENSIONS OF THE BASIC IRT MODELS

Early IRT models, such as the Rasch model and the two-parameter model, concentrate mainly on analyzing
dichotomous responses that have a single latent trait. The preceding sections describe the characteristics of
these two models. Various extensions of these basic IRT models have been developed for more flexible
modeling in different situations. The following list presents some extended (or generalized) IRT models and
their capabilities:

» graded response models (GRM), which analyze ordinal responses and rating scales

+ three- and four-parameter models, which analyze test items that have guessing and ceiling parameters
in the response curves



+ multidimensional IRT models, which analyze test items that can be explained by more than one latent
trait or factor

» multiple-group IRT models, which analyze test items in independent groups to study differential item
functioning or invariance

+ confirmatory IRT models, which analyze test items that have hypothesized relationships with the latent
factors

These generalizations or extensions of IRT models are not mutually exclusive. They can be combined to
address the complexity of the data and to test the substantive theory in practical applications. Although
the IRT procedure handles most of these complex models, it is beyond the scope of this paper to describe
all these models in detail. For general references about various IRT models, see De Ayala (2009) and
Embretson and Reise (2000). The current paper focuses on the basic unidimensional IRT models that are
used in the majority of applications.

SOME MATHEMATICAL DETAILS OF IRT MODELS

This section provides mathematical details of the multidimensional graded response model for ordinal items.
This model subsumes most basic IRT models, such as the Rasch model and the two-parameter model, as
special cases. Mathematically inclined readers might find this section informative, whereas others might
prefer to skip it if their primary goal is practical applications.

A d-dimensional IRT model that has J ordinal responses can be expressed by the equations
Yii = Ain; + €
Pijk = Pr(uij = k) = Pr(a(j,k_l) <)ij < Ol(j,k)), k=1,....K

where u;; is the observed ordinal response from subject i for item j; y;; is a continuous latent response
that underlies u;;; o ; = (a(j,0) = —00,0j1), - - - 0U(j, K—1)- 0(j,k) = 00) iS a vector of threshold parameters for
item j; A ; is a vector of slope (or discrimination) parameters for item j; ; = (n:1,....n:q) is a vector of latent
factors for subject i, n; ~ Ny(u, X); and €; = (¢;1,...,¢€;5) is a vector of unique factors for subject i. All
the unique factors in €; are independent of one another, suggesting that y;;, j = 1...., J, are independent
conditional on the latent factor 5;. (This is the so-called local independence assumption.) Finally, »; and ¢;
are also independent.

Based on the preceding model specification,
gk Q=AM
Pijk =/ p(yiA;ni, Ddy =/ p(y;0, )dy
(). k—1) oG k—D)=AjNi

where p is determined by the link function. It is the density function of the standard normal distribution if the
probit link is used, or the density function of the logistic distribution if the logistic link is used.

The model that is specified in the preceding equation is called the multidimensional graded response model.
When the responses are binary and there is only one latent factor, this model reduces to the two-parameter
model, which can be expressed as

Yij = Ajni + €ij
pij = Pr(uij = 1) = Pr(yi; > a;)

A different parameterization for the two-parameter model is
yij =aj(ni —bj;) +e€ij

pij = Pr(u;; = 1) = Pr(y; > 0)

where b; is interpreted as item difficulty and a; is called the discrimination parameter. The preceding two
parameterizations are mathematically equivalent. For binary response items, you can transfer the threshold
parameter into the difficulty parameter by b; = j—j The IRT procedure uses the first parameterization.
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The two-parameter model reduces to a one-parameter model when slope parameters for all the items are
constrained to be equal. In the case where the logistic link is used, the one- and two-parameter models are
often abbreviated as 1PL and 2PL, respectively. When all the slope parameters are set to 1 and the factor
variance is set to a free parameter, you obtain the Rasch model.

You can obtain three- and four-parameter models by introducing the guessing and ceiling parameters. Let
g; and c¢; denote the item-specific guessing and ceiling parameters, respectively. Then the four-parameter
model can be expressed as

pij = Pr(u;; =1) =g; + (c; — g;j) Pr(yi; > 0)

This model reduces to the three-parameter model when ¢; = 1.

EXAMPLE 1: LAW SCHOOL ADMISSION TEST

The data set in this example comes from the Law School Admission Test (LSAT). It includes the responses
of 1,000 subjects to five binary items. The following DATA step creates the data set IrtLsat:

data IrtLsat;
input iteml-item5 @Q;
datalines;

00O0O00O

. more lines ...

11111

’

The following statements fit the IRT model by using all the default settings. The PLOTS= option is used to
request the scree plot and the item characteristic curves, with the arguments SCREE and ICC.

ods graphics on;
proc irt data=IrtLsat plots=(scree icc);
var iteml-item5;

run,;
The unidimensional assumption suggests that the correlation among these items can be explained by a
single latent factor. You can check this assumption by examining the eigenvalues and the magnitude of
the item slope (discrimination) parameters. A small slope parameter value (such as < 0.5) often suggests
that the corresponding item is not a good indicator of the latent construct. Figure 4 and Figure 5 show the
eigenvalue table and the scree plot, respectively. You can see that the first eigenvalue is much greater than
the others, suggesting that a unidimensional model is reasonable for this example.

Figure 4 Eigenvalues of Polychoric Correlations
The IRT Procedure

Eigenvalues of the Polychoric Correlation Matrix
Eigenvalue Difference Proportion Cumulative
1 1.95547526 0.97064793 0.3911 0.3911
2 0.98482733 0.12784702 0.1970 0.5881
3 0.85698031 0.12009870 0.1714 0.7595
4 0.73688161 0.27104612 0.1474 0.9068
5 0.46583549 0.0932 1.0000



Figure 5 Scree Plots
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Parameter estimates for this example are shown in Figure 6. Under the parameterization used by PROC
IRT, the slope parameter is the same as the discrimination parameter. As a result, these parameters are
used interchangeably throughout this paper. The threshold parameter has the same interpretation as the
difficulty parameter. For this example, the threshold parameter estimates range from —2.59 to —-0.19; item1
is the easiest item, and item3 is the most difficult item. The fact that all the threshold parameter estimates
are less than 0 suggests that all the items in this example are relatively easy and therefore are most useful
in discriminating subjects who have lower abilities. As mentioned in the preceding section, the threshold
parameter can be transformed into the difficulty parameter. For each ICC plot shown in Figure 7, the vertical
reference line indicates the difficulty of each item. The difficulty parameter value is shown at the top of each
plot beside the vertical reference line.

The slope parameter values for this example range from 0.45 to 1.36. By comparing the ICCs in Figure 7,
you can observe how the value of the slope parameter affects the shape of the ICC. Among these five items,
the ICC for item1 is the steepest and the ICC for item3 is the flattest.

Figure 6 Parameter Estimates
The IRT Procedure

Item Parameter Estimates

Standard
ltem Parameter Estimate Error Pr > |t

item1 Threshold -2.59087 0.22115 <.0001
Slope 1.36225 0.25067 <.0001
item2 Threshold -1.05859 0.12506 <.0001
Slope 1.32388 0.27282 <.0001
item3 Threshold -0.19313 0.06667 0.0019
Slope 0.44845 0.11478 <.0001
item4 Threshold -1.26496 0.10733 <.0001
Slope 0.95289 0.18798 <.0001
item5 Threshold -1.98140 0.12915 <.0001
Slope 0.82665 0.17174 <.0001



Figure 7 Item Characteristic Curves
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EXAMPLE 2: QUALITY OF LIFE SURVEY

The data set in this example comes from the 1978 Quality of American Life Survey. The survey was
administered to a sample of all US residents aged 18 years and older in 1978. Subjects were asked to rate
their satisfaction with many different aspects of their lives. This example includes 14 items. Some of the
items are as follows:

satisfaction with community

« satisfaction with neighbors

satisfaction with amount of education received

satisfaction with health

+ satisfaction with job

satisfaction with income

This example uses 1,000 random samples from the original data set. The following DATA step creates the
data set IrtSat:

data IrtSat;
input iteml-iteml4 QQ;
datalines;
1 1 2 1 1 2 2 2 . 2 2 2 2 2

. more lines ...

i 1 1 1 2 2 2 2 . 1 1 1 1 3
For illustration purposes, these items are reorganized into different numbers of categories. The number of

categories ranges from 2 to 7. By default, the IRT procedure uses the graded response model (GRM) with
the logistic link for all the items. For binary response, the GRM is equivalent to the two-parameter model. In



PROC IRT, you can specify different types of response models for different items by using the RESFUNC=
option in the MODEL statement.

For this example, because all the items are designed to measure subjects’ satisfaction with different aspects
of their lives, it is reasonable to start with a unidimensional IRT model. The following statements fit such a
model by using all the default options:

ods graphics on;

proc irt data=IrtSat plots=(iic tic) ;
var iteml-iteml4;

run;

Figure 8 shows the eigenvalue table for this example. You can see that the first eigenvalue is much greater
than the others, suggesting that a unidimensional model is reasonable for this example.
Figure 8 Eigenvalues of Polychoric Correlations
The IRT Procedure

Eigenvalues of the Polychoric Correlation Matrix
Eigenvalue Difference Proportion Cumulative

1 5.57173396 4.19614614 0.3980 0.3980
2 1.37558781 0.29273244 0.0983 0.4962
3 1.08285537 0.12600033 0.0773 0.5736
4 0.95685504 0.09108909 0.0683 0.6419
5 0.86576595 0.09758221 0.0618 0.7038
6 0.76818374 0.12571683 0.0549 0.7586
7 0.64246691 0.06108305 0.0459 0.8045
8 0.58138386 0.04214553 0.0415 0.8461
9 0.53923833 0.10092835 0.0385 0.8846
10 0.43830998 0.07346977 0.0313 0.9159
11 0.36484021 0.04667935 0.0261 0.9419
12 0.31816085 0.03905135 0.0227 0.9647
13 0.27910950 0.06360101 0.0199 0.9846
14 0.21550849 0.0154 1.0000

In the context of IRT, the amount of information that each item or test provides is not evenly distributed
across the entire continuum of latent constructs. The value of the slope parameter represents the amount
of information provided by the item. For this example, parameter estimates and item information curves
are shown in Figure 9 and Figure 10, respectively. By examining the parameter estimates and the item
information curves, you can see that items that have high slope values are more informative than items that
have low slope values. For example, because the slope value of item1 is much smaller than the slope value
of item9, the information curve is flatter for item1 than for item9.

For individual items, most of the information concentrates around the area defined by the threshold parame-
ters. The binary response item provides most of the information around the threshold. For ordinal items,
most of the information falls in the range defined by the lowest and the highest threshold parameters. By
comparing the information curves for item7 and item9, you can also see that in cases where response items
have the same slope value, the ordinal item is more informative than the binary item.

Item selection is an important process for test (questionnaire) development. It serves two purposes: to
ensure that all the items included in the test are sufficiently unidimensional, and to maximize the test
information across the interested continuum of latent constructs. During the item selection process, ideally
you want to select high-differential items whose threshold parameters cover the interested latent construct
continuum. However, in practice you often encounter the situation in which these high-differential items
cannot provide enough information for the entire continuum, especially when these items are binary. In this
situation, you might need to select some lower-differential items that can add information to the area that is
not covered by these high-differential items.



Figure 9 Parameter Estimates
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The IRT Procedure

Item Parameter Estimates

Standard
Parameter Estimate Error

Threshold 1 -0.95503 0.07367
Threshold2 1.47924 0.08372
Slope 0.45394 0.07042

Threshold 1 -0.65531 0.08328
Threshold 2 0.56898 0.08242
Slope 1.20647 0.09708
Threshold 0.00170 0.07114
Slope 0.72428 0.08511
Threshold -0.44155 0.08367
Slope 1.23650 0.11147

Threshold 1 -0.73837 0.08045
Threshold 2 0.64113 0.07930
Slope 1.03810 0.08755
Threshold 1 -0.42252 0.07133
Threshold 2 0.85163 0.07544
Slope 0.70786 0.07605
Threshold 1 -1.47166 0.11278

The IRT Procedure

Item Parameter Estimates

Standard
Parameter Estimate Error

Threshold 2 0.48414 0.10006
Threshold 3 1.68936 0.11665
Slope 1.89361 0.12255
Threshold 1 -1.04483 0.09261
Threshold 2 0.87777 0.09072
Threshold 3 1.94715 0.11031
Slope 1.41242 0.09836
Threshold 0.33440 0.11941
Slope 1.85067 0.20122
Threshold 1 -0.54424  0.09447
Threshold2 1.15923 0.10220
Slope 1.66943  0.12080
Threshold 1 -1.69919 0.11397
Threshold 2 -0.03551 0.09403
Threshold 3 1.09760 0.10224
Threshold 4 227404 0.12716
Slope 1.66135 0.10896

Pr > |t|
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.4905
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

Pr> |t
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0026
<.0001
<.0001
<.0001
<.0001
<.0001
0.3529
<.0001
<.0001
<.0001
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Figure 9 continued
The IRT Procedure

Item Parameter Estimates
Standard

Item  Parameter
item12 Threshold 1
Threshold 2
Threshold 3
Threshold 4
Threshold 5
Threshold 6
Slope
item13 Threshold 1
Threshold 2
Threshold 3
Slope
item14 Threshold 1
Threshold 2
Threshold 3
Slope

Estimate
-2.22687
-0.95057
-0.10165
0.73278
1.48510
2.20842
1.18861
-1.99808
0.81878
2.72939
2.47742
-1.90189
0.51378
1.91870
1.39119

Error
0.11781
0.08845
0.08221
0.08572
0.09659
0.11444
0.08590
0.14409
0.12153
0.16482
0.15809
0.10988
0.08654
0.10854
0.09549

Pr > |t|
<.0001
<.0001
0.1082
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

Figure 10 Item Information Curves
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Figure 10 continued

Item Information Curves
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For this example, the slope parameters range from 0.45 to 2.47, and the threshold parameters range from
—2.23 10 2.47. Among these 14 items, three of them, item1, item3, and item6, have slope values below 1,
and the slope value for item1 is below 0.5. The item information curves suggest that these three items,
especially item1, provide much less information than the other items. As a result, you might consider
dropping these three items. Figure 11 shows the test information curves for the original test that has 14
items and the shorter test that excludes item1, item3, and item6. The two information curves are almost
identical, suggesting that the shorter test provides almost the same amount of information as the longer test.

After item calibration and item selection, another important task is to score subjects based on their responses.
In IRT, there are three widely used scoring methods: maximum likelihood (ML), maximum a posteriori (MAP),
and expected a posteriori (EAP). You can specify them by using the SCOREMETHOD= option in the PROC
IRT statement. The following example code scores the subject based on the shorter test by using the MAP
method:

proc irt data=IrtSat scoremethod=map;
var item2 item4 item5 item7-iteml4;

run;
Figure 11 Test Information Curves
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ITEM RESPONSE THEORY—DOES IT OFFER MORE THAN CTT CAN PROVIDE?

Classic test theory (CTT) has been the basis for developing psychological scales and test scoring for many
decades. You might wonder why you would need IRT models, which serve similar purposes. This section
points out some conceptual and practical advantages of IRT models over CTT models in regard to test or
scale construction and development. The main purpose is to point out that IRT models have unique features
that complement CTT-based measures rather than to thoroughly compare the two approaches.

First, a limitation of CTT is that the item and person characteristics, such as item difficulty parameters and
person scores, are not discernible. Depending on the subpopulation in question, item characteristics might
change. If a high-ability subpopulation is considered, all test items would appear to be easy. But when a
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low-ability subpopulation is considered, the same set of items would be difficult. This limitation makes it
difficult to assess individuals’ abilities by using different test forms. However, in IRT, the item characteristics
and the personal abilities are formulated by distinctive parameters. After the items are calibrated for a
population, the scores for subjects from that population can be compared directly even if they answer different
subsets of the items. Some researchers refer to this as the invariant property of IRT models (for example,
see Hambleton, Swaminathan, and Rogers 1991).

Second, the definition of reliability in CTT is based on parallel tests, which are difficult to achieve in practice.
The precision of measurement is the same for all scores for a particular sample. In CTT, longer tests are
usually more reliable than shorter tests. However, reliability in IRT is defined as a function that is conditional
on the scores of the measured latent construct. Precision of measurement differs across the latent construct
continuum and can be generalized to the whole target population. In IRT, measurement precision is often
depicted by the information curves. These curves can be treated as a function of the latent factor conditional
on the item parameters. They can be calculated for an individual item (item information curve) or for the
whole test (test information curve). The test information curve can be used to evaluate the performance of
the test. During test development, you want to make sure that the selected items can provide adequate
precision across the interested range of the latent construct continuum.

Third, missing values in CTT are difficult to handle during both test development and subject scoring.
Subjects who have one or more missing responses cannot be scored unless these missing values are
imputed. In contrast, the estimation framework of IRT models makes it straightforward to analyze items
that have random missing data. IRT can still calibrate items and score subjects by using all the available
information based on the likelihood; the likelihood-based methods are implemented in the IRT procedure.

MAIN FEATURES OF THE IRT PROCEDURE

The IRT procedure enables you to estimate various IRT models. The following list summarizes some of the
main features of PROC IRT:

fits the following classes of models: Rasch model; one-, two-, three-, and four-parameter models; and
graded response models

* supports logistic and probit links

calibrates items that can have different response models
+ performs multidimensional exploratory and confirmatory analysis
« performs multiple-group analysis, with fixed values and equality constraints within and between groups

+ estimates factor scores by using the maximum likelihood (ML), maximum a posteriori (MAP), or
expected a posteriori (EAP) method

* supports the quasi-Newton (QN) and expectation-maximization (EM) algorithms for optimization

SUMMARY

This paper provides a brief introduction to item response theory (IRT) and the related models. The Rasch
and two-parameter models are the two models most frequently used in applications. Basic concepts and
interpretations of these basic models are described. Examples illustrate the use of the IRT procedure,
which is new in SAS/STAT 13.1, for fitting IRT models and selecting useful items. IRT provides a modeling
framework that you can use to study item characteristics and person scores unambiguously from the data.
Some advantages of IRT over classic testing theory (CTT) are discussed. The data examples in this paper
illustrate only some of the functionality that PROC IRT provides. Actual test developments might require
more extensive analysis, including measures based on CTT and inputs from content experts. For detailed
discussions of test development, see DeVellis (2011) and Edelen and Reeve (2007).
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